I. Phys. B: At. Mol. Opt. Phys. 28 (1995) 3003-3026. Printed in the UK

Threshold ionizaton of atoms by electron and positron
impact

Jan-Michael Rost
Fakultat fiir Physik, Universitit Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany

Received 12 January 1995, in final form 11 May 1995

Abstract, In two recent letiers results for threshold ionization of hydrogen by electron impact
(Rost J M 1994 Phys. Rev. Lett. 72 1598} and positron impact (Rost J M and Heller E J 1994
Phys. Rev. A 49 R4289) were corumunicated. The results were obtained by calenlating the §-
matrix semiclassically in Feynman’s path integral formalism. This paper gives a more complete
account of the theoretical method, Moreover, it is shown how the ionization cross section of
atomic targets other than hydrogen can be expressed with the hydrogen cross section through a
scaling relation. This demonstrates the universality of the threshold behaviour.

1. Introduction

The motivation for this work, more specifically, for using a semiclassical approach to
understand threshold ionization, is threefold. Low-energy inelastic scattering has been
described within different frameworks, dependent on the process under consideration.
For excitation and charge transfer (for instance in ion-atom collisions) coupled channel
calculations with basis sets centred on the target and the projectile have been successful
(see, for example, Burke and Berrington 1993). Ionization in the low- and intermediate-
energy regime is much more difficult to describe since a formulation of observables with
discretized continuum states does not necessarily converge for long-range potentials. Only
recently the ‘convergent close-coupling method’ (CCC) has provided numerically converged
cross sections and the asymmetry parameter for ionization of hydrogen at about 10 eV
excess energy and higher (Bray and Stelbovics 1993). For small excess energies it has
not been possible to obtain converged results since the accuracy depends sensitively on
the number of excitation channels included. In the limit £ — O an infinite number of
these states would be necessary for an accurate jonization cross section. Hence, even the
spectacular success of the cCC method over a wide energy range still leaves the threshold
region as a theoretically unsolved problem. This is one motivation for the semiclassical
S-matrix theory as presented here,

Another motivation is the notorious difficulty with final states containing more than
two charged fragments in the continuum. Quantum mechanically there is a big difference
between these states and states representing ‘free’ particles in problems with short-range
forces (Rosenberg 1974, Brauner et al 1989, Berakdar and Briggs 1994). In contrast,
semiclassically there is no conceptual difference in describing charged or neutral particles in
the continuum. Moreover, it is not necessary to know the form of the continuum final states,
for instance, in an ionization calculation. To demonstrate these conceptual advantages of
semiclassical scattering theory, in particular for long-range potentials, is a second motivation
for this work.
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Finally, a third motive arises from the historical perspective on threshold ionization.
Since Wannijer's fascinating paper on the mechanism of threshold ionization based on
purely classical reasoning in 1953 there has been a continuing discussion as to whether
Wannier's jonization scenario is correct and whether a classical approach is justified.
Important contributions can be found in the papers by Peterkop (1971), Rau (1971), Temkin
(1982), Feagin (1984) and Crothers (1986). The semiclassical S-matrix description naturally
contains the classical result as a limit and can shed new light on the accuracy and justification
of the classical limit.

An overview of the literature about threshold ionization has been given in the
review articles by Read (1984a), Ran {1984), Grujic {1936) and Lubell {1994). Recent
developments include the time-dependent evolution of wavepackets on the Wannier ridge
(Kazansky and Ostrovsky 1993) and the classical and quanturn mechanical investigation of
the so-called ‘s-wave model’ for helium (Handke et af 1993). Not specifically designed for
the threthold but very successful in the description of differential cross sections at small
excess energies is the approach developed initially by Brauner et al (1989} with important
improvements by Berakdar and Briggs (1994) and the application to photoionization by
Maulbetsch and Briggs (1992). Rather than repeating the overview of the literature in
detail, here we prefer to put the semiclassical S-matrix approach into a broader perspective.

Semiclassical approximations have existed almost as long as the quantum theory itself.
They have served two rather different purposes: first, to explore the clagsical limit of
quantum mechanics and to gain more insight into the nature of quantum phenomena.
Second, to develop a theory that provides reliable approximations for cases in which it
is not possible to solve the full problem quantum mechanically. Certainly, the formulation
of the semiclassical propagator initiated by van Vleck (1928) and completed by Maslov
(see Maslov and Fedoriuk 1981) and Guizwiller (e.g. Gutzwiller 1990) belongs to the
first category. Within the second category the WKB approach has been most successful in
different areas of physics. The essentially one-dimensional theory has led to useful results
in times where we lacked the computer power to treat complicated, more dimensional
problems. For scattering problems a logical application has been the calculation of WKB
phase shifts for elastic scattering, pioneered by Ford and Wheeler (1959). Subsequent
topics of semiclassical scattering theory have dealt with problems that fulfil the traditional
criterion for the application of semiclassical methods, that is, that the relative change of
the wavelength in the physical problem is small. An example is nucleus—nucleus scattering
where the heavy masses and the large charges of the nuclei provide a short de Broglie
wavelength (Brink 1982).

With the improvement of computers, even the most general semiclassical formulation
by van Vieck has become computationally feasible and thus concepiually interesting
again (Sepulveda and Heller 1994). Miller showed in the seventies that semiclassical
approximations for the Green’s function itself can lead to remarkable results for reactive
scattering in molecular complexes, whose dynamics cannot be characterized by short
wavelengths (Miller 1974, 1975 and references therein). For the energy spectrum of bound
systems Gutzwiller formulated the ‘trace formula’ (Gutzwiller 1990). Together with the
‘cycle expansion’, a resymmation method, the trace formula was used recently by Wintgen
et al (1992) to show that helium can be quantized semiclassically despite the initial failure
of the old quantum theory some 60 years ago, Using the van Vleck propagator directly in
the time domain Tomsovic and Heller (1994) obtained spectra and selected eigenstates of
classically chaotic systems semiclassically to a good accuracy. Other recent applications of
semiclassical theory include electron transport problems in mesoscopic devices, quantum
dots etc (see for instance Baranger ef al 1993). These are only a few, although spectacular,
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examples from a substantial body of work that has advanced semiclassical theories so much
in the last few years that it might be justified to speak of a revival of the semiclassical
perspective. The revival is fueled by new experimenis with excellent energy resolution
even for highly excited spectra (Main et af 1986). Their interpretation needs a theoretical
description and understanding of dynamics in the limit of arge quantum numbers. This
implies a natural demand for further developing semiclassical methods. An impressive
example of such a development is the understanding of a complicated spectrum of hydrogen
in a magnetic field. Accompanied by exact quantum mechanical treatments (see the reviews
by Wintgen and Friedrich (1989) and Hasegawa ef al (1989) as well as the special issue
of J. Phys. B: At. Mol. Opt. Phys. 27 (1994)) the semiclassical approach was pioneered by
Wintgen (1987, 1988} and Delos (Du and Delos 1987).

Here we will present a semiclassical formutation for inelastic electron—atom scattering.
It is derived from the path integral representation of the S-matrix and in the form given
here is especially designed to describe the threshold region of ionization. The result will be
similar to Miller’s ‘classical S-matrix’, formulated 25 years ago and apphied to 2p model
calculation in reactive scattering of molecules (Miller 1970, 1970b, 1970c, Rankin and
Miller 1971). The major difference is the application to scattering involving the long-
range Coulomb force. However, this actually improves the accuracy of the semiclassical
approximation in comparison to Miller’s results for molecular problems.

The paper is organized as follows. In section 2 we parametrize the ionization cross
section with variables suitable for describing threshold ionization. The formulation utilizes
partial waves of fixed total angular momentum L. Furthermore, based on the classical
scaling properties for the Coulomb potential, we give an argument why Feynman's path
integral can be evaluated semiclassically for fragmentation close to threshold E = 0.
An additional substantial simplification emerges that allows the total cross section to be
described ultimately with only two degrees of freedom, the radial distances r; between the
electrons and the nucleus. In section 3 the semiclassical S-matrix for ionization is explicitly
derived from Miller’s classical S-matrix {1974) for reactive scattering. Section 4 is devoted
to an application of the semiclassical S-matrix approach to positron-hydrogen scattering.
The essential features of Coulomb fragmentation will become clear in this example. In
addition, we present a simple alternative derivation of the S-matrix. In section 5 we attack
the problem of threshold ionization of hydrogen, the *classical’ Wannier problem. Here
we will discuss in detail the differential cross section for the energy sharing between the
electrons as well as the total ionization cross section and will derive the classical origin
for the different behaviour of the singlet and the triplet partial wave. In section 6 we use
some properties of the threshold ionization to extend the results obtained for hydrogen as
a target by a simple scaling argument to valence-shell as well as to inner-shell ionization
of complex atoms. Finally, in section 7, we will summarize the results and conclude with
some remarks about the connection of threshold ionization (E > () and resonant scattering
(E < Q). -

2. Formal considerations for the threshold analysis

2.1 Irreducible decomposition of the cross section according to the constants of motion

The ionization cross section can be parametrized in many different ways (Klar and Fehr
1992). Our intention is to formuiate a cross section whose variables are as close as possible
to the quantities relevant for the approximations traditionally introduced when the behaviour
of the scattering system is discussed close to the fragmentation threshold E = 0. To this
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end we use the constants of motion of the two-electron Hamiltonian for an irreducible
decomposition of the cross section. The Hamiltonian for three different particles interacting
via two-body central forces preserves the total spatial angular momentum L, and parity =,
If two of the three particles are identical (e.g, two electrons) there is an additional exchange
symmetry {e; < ez) which can be denoted by the net spin S that is preserved in the non-
relativistic case for the identical pair (5 = O for singlet and § = 1 for triplet). On the
other hand, the final state in the continuum is characterized by the two electron momenta
(P1, P2). For a general three-body system we choose p; and p, to connect the two particles
of the same polarity with the third particle, respectively. Another set of variables more
convenient for the parametrization with the constants of motion would contain p;, p; and
)2 = arccos py pa/{py p2) through which the position of the three particles relative to each
other is fixed. The position of this triangle in space is then described by a rotation with
a set of Euler angles (¢, 6,&) = 5. Instead of momenta we may use energies and the
energy conservation explicitly, ¢ = p?/2 and p2/2 = E — ¢, so that finally (py, p2)
is replaced by the set (£2;, E, €,612). By integrating the triple differential cross section -
d*c/(dQ; dcos 63 de) over Q3 we obtain the double differential cross section (DDCs) which
is differential in the angle 612 and the energy ¢ of one electron. It can be written as a sum
of partial cross sections parametrized by the total angular momentam

dzg S ( E)

dcosglz de = ZO‘E'K(E’ €, 912)0{’) (1)
L

where o' denotes the initial state that we take in this paper to be the ground state (1s) of
the target electron and a projectile with the energy ¢’ = E — Ej;. As mentioned above, we
want to start our threshold consideration from a formulation of the cross section in terms of
the variables € and 8y traditionally used in threshold theories. By starting from the cross
section (1) the approximations to be introduced for the threshold ionization will become
transparent. These approximations can be motivated by evaluating the partial cross sections
or in (1) with a semiclassical S-matrix approach. Since only elements of the classical
dynamics of the three-body system enter the semiclassical S-matrix, the approximations
are based on the properties of the classical Hamiltonjan in the limit of vanishing excess
energy E — 0 and the relation to previous threshold approaches by Wannier and others
will become clear,

2.2. Properties of the classical equations of motion of a three-body Coulomb system

A classical system of N particles interacting via two-body Coulomb forces has some
remarkable properties that turn out to be important for the semiclassical description of
the scattering process. They do not depend on the choice of the coordinate system but are
particularly simple to derive in hyperspherical coordinates (Rost 1994b). The hyperradius
R? =Y, pir?, composed of all mass weighted lengths of the Jacobi coordinates, measures
the overall extension of the system. The mass weighting factors u; are the reduced masses
along the Jacobi vectors 7;. The rest of the new coordinates spans a space of 3N — 4
angles 2 on the hypersphere with radius R. We scale the coordinates, momenta and the
Hamiltonian H itself with the energy

R=ER P =E" 2P H=E'H=1. (2}

From equation (2) it follows that the orbital angular momentum L and the action ¢—both
have the same dimensions—scale as

-
-

L=FAp=+EFAp=+EL. 3)
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The angles and the corresponding generalized momenta are dimensionless and therefore not
affected by the scaling. The scaled Hamiltonian reads
152 2
H_l-"p—-l-A £9)+_C_‘_(=52_)
2 2R2 R
where A(Q2) is the grand angolar momentum operator, which contains the dependence
upon all the momenta in the angles §2 while C(£2) can be viewed as an angle-dependent
generalized charge whose exact form is not important for the present context. From the
structure of the Hamiltonian one can derive the following properties (see appendix A):
(i) As a function of time the hyperradius R(t) has one extrernum that is a minimum.
(i} In the limit E — 0 the dynamics for any (preserved) total angular momentum L in
a two-electron atom is governed by the same effective Hamiltonian as L = 0 (this follows
immediately from (3)).
(iii) The angle 8,5 = 180°, for instance, between the electrons in a two-electron atom
is a fixed point of the classical equations of motion, i.e. if f12(fo) = 180° and &5(1) = 0
then 6y,(f) = 612(tp) for all times ¢. It must be emphasized that this property holds only for
three particles and not in the general case of N particles.

@

2.3. The §-matrix for fragmentation in the limit £ - 0

The relevant dynamical object for scattering is the S-matrix which describes the transition
from an initial state |{) to a final state | f}. In the momentum representation we may write

$iE) = lim f (Flp) [exp( - )lm(pmdp dp ®)

where we have forma]ly denoted the (3N — 3)-dimensional momentum vector as p. The
propagator can now be expressed with Feynman’s path integral

q} :é_
lewo () 19 = [ Diptesp (52 = [ Dijiex (;,%f%) ©

where @[] = [ L dr is the classical action along an individual path p(t). The action scales
with the energy of the path, according to (3), as ®{5] = PE[p]"2. Generally the paths
contributing to the path integral (6) will have different energies E[5] and it is not possible
to identify the energy E of the S-matrix with the energy E[p] of the paths.

For complete fragmentation, however, the final state of asymptotically free particles
{p|f} = 8(p — py) forces all paths in (6) on the energy shell, E[p] = E. Hence, for any
finite action $ the integrand in (6) will oscillate infinitely rapidly for E{p] = E — 0 and
on mathematical grounds we can evaluate the {path)-integral by stationary phase, i.e. with
the paths that minimize the action S®[5] = 0. Of course, these paths are just the solutions
of the classical equations of motion and the result is the same as the semiclassical limit
f — 0 of the Feynman path integral. This is also obvious from (6) where only the product
hE[p]"? appears. The fact that the energy E[j] of the paths for fragmentation is the energy
E of the system enables us to identify the limit £ - 0 with the semiclassical limit & — 0
of the path integral.

2.4. Simplifving approximations for threshold ionization

With the results from sections 2.2 and 2.3 we can justify a considerable simplification
for electron— or positron—atom scattering close to the fragmentation threshold (the atom is
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treated as a core with one active electron). Using (ii) from section 2.2 we may describe
the BDCs of (1) with the L = 0 partial wave only. The situation seems to be similar to
the familiar elastic scattering under short-range forces where a partial wave analysis shows
that only L = 0 survives for £ — 0. Note however, that the situation is in fact radically
different for inelastic Coulomb scattering: all partial waves contribute with an a priori
unknown weight but the dynamics for each L is determined in the limit £ — 0 by the
same Hamiltonian as for the S-wave. Formally, we may write (suppressing here and in the
following the labels S and » when not explicitly needed)

oL(E — 0,¢,610,0') 2 5,00(E, €, 013, &) )

where the 5;, are simple numbers and specify the relative weight of the partial cross sections
oy, for E — 0. With equation {7) the DDCs of (1) becomes proportional to the L = 0 partial
intensity

d’c
dcosbyz de
Furthermore, with (iii) we can expect that the main contribution to the single differential
cross section (i.€. integrated over #;3) comes from the fixed point at 8,5 = 180°. With this
final approximation the single differential cross section close to threshold reduces to
do(E)
de

Hence, leaving only the overall normalization S undetermined, the classical problem
necessary to solve for a semiclassical approximation of (9) has been reduced from 12 phase
space varjables to 4, the two electron-nucleus distances r; and the conjugate momenta p;,

(E — 0) = log(E, €, 2, @) (8)

= ﬁaﬂ(E’ €, 912 = 1800, O!’) . (9)

3. The semiclassical S-matrix for the L = @ partial wave

3.1. The collinear Hamiltonian and its implications for the scattering amplitude

The scattering for the L = 0 partial wave at 85 = 180° may be regarded as an approximation
to the total cross section justified for £ — 0 within the semiclassical $-matrix approach
following the steps from (1) to (9). Alternatively one might look at it as a model for
scattering under the Hamiltonian

A Y1 W S
2mpac  2mpe me N . n+n

H= (10)
in atomic units (¢ = m, = A = I). Since % plays a crucial role in the semiclassical
limit we will write & explicitly in the important equations. The mass indices indicate the
reduced masses mqg = MoMmg/(Mmy + mg) between the particles o and 8. The particles A
and B have the same polarity and particle C has opposite polarity, so that r| = rac and
r2 = rac. In the case of electron—atom scattering the nucleus would be the third particle
with 1/m¢ = 0. For positron—atom scattering the electron is particle C with 1/me =1,
and the nucleus is particle B with mpc = 1 and muc = 1. In the past the Hamiltonian
(10} was studied quantum mechanicaily as well as classically (Bliimel and Reinhardt 1991,
Kim and Ezra 1951). We will give a self-consistent semiclassical scattering amplitude S, o
for the Hamiltonian (10) and uitimately with this result describe the true physical situation
close to threshold in the context of (9). Quantum mechanically, even for a partial cross
section at 8y, = 180°, it is necessary to treat the angle 6,2 as a dynamical variable for the
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collision. Semiclassically, however, because of the fixed point at &2 = 180° (see (ii)), one
can treat 6y, as a parameter throughout the dynamical calculation, i.e. one can start from the
collinear Hamiltonian (10} and interpret the result later as op in (9). There is, however, a
subtle problem in the transition from the quantum mechanical tc the semiclassical treatment
of (10). The variables r; are not Cartesian coordinates but radii in spherical coordinates,
it is cumbersome to switch in the semiclassical path integral representation from Cartesian
coordinates to any set of curved coordinates. This will introduce additional terms in the
effective Lagrangian to be used in the propagator (see Gutzwiller 1990, p 202). For the
special case of spherical coordinates an additional centrifugal potential which acts like an
artificial angular momentum appears in the Lagrangian. This term, known as the ‘Langer
modification’, has been investigated recently in the context of the semiclassical propagator
for a Coulomb potential by Manning and Ezra (1994). In the present treatment of threshold
jonization we have not included the curvature correction for the same reason that we have
used the L = 0 partial wave exclusively (see (ii) in section 2.2).

The formulation of the cross section is now straightforward. Since for each particle
there has only one dimension left, the cross section with the dimension of an areain D =3
reduces in D = 1 to a probability, directly proportional to the square modulus of the
symmetrized S-matrix, semiclassically given by

I
See(E) =) /Pile @) exp ['Tf - 5-‘1’5’-'—] . (11a)
J

The weight of the jth wrajectory is determined by its probability

-1
d¢

1
Br}

Pi(e, €)= R

(116}

¢
where R is the normalization constant resulting from the preservation of classical probability
and r; is the initial position of the projectile on the jth trajectory. The sum runs
over all classical trajectories j that take the projectile from energy €’ to ¢ during the
collision. Each trajectory accumulates a phase, which is defined by the classical action
®;(¢, ¢’y = [ g1 dp1+ [ g2 dps and a contribution of v; % /2 from caustics along the trajectory
{Gutzwiller 1990).

3.2. Connection with Miller's classical S-matrix

The form of the semiclassical S-matrix (11a) is similar to Miller’s ‘classical S-matrix’
(Miller 1974) for transition probabilities between an initial bound state with quantum number
r' to a final state with quantum number . In this case the S-matrix reads (Miller 1974,
equation (3.30))

a -1/2 P .. .
SwB) =Y i[—znm (é’;) } exp [M - ﬂ] . 12)
cl.traj. 99"/ h 2

We have added the sum over the trajectories and the phase v due to the Maslov indices
not explicitly mentioned by Miller. Furthermore, we have adopted Miller’s notation to our
situation by mapping the multidimensional quantum number vector of the initial state into
our single quantum number for the one-dimensional bound state 7, — »’ and similarly
for the final state fi; — n. The phase space variables (n, ) represent a pair of conjugate
action-angle variables where the classical action is taken at its quantized integer value 2.
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This ‘quantum number function’ n = n{e) is classically continuous and with its help we
can rewrite P(¢, ¢') from (115) (we suppress the index j for a specific trajectory) as

ar aP| on an
Ve — = —| — =P, e)—. 13
Pled)= 5| =l 5 = "% (13)
The most important modification, however, concerns the initial state which we would like to
describe with the asymptotic position r* of the projectile and not the classical angular variable
g of the target electron. The connection between these two variables in the asymptotic limit

before the collision was already given by Miller (1974, equation (3.31))
o, B(E—€)r

< 4

= —_— 14
g=q w (14)
where p’ is the momentum of the projectile before the collision and E — ¢’ = —(2n2h%)~}
is the hydrogenic bound state energy. Then
E—€y 1 .
an —h(2¢' - 2E) 13
so that
ag 2¢' — 2E)%?
9 _ k(_f_) . (16)
ar! r
With the results (13)-{16) we can now evaluate the chain of derivatives
ag’ ag' ar'| 8
| 4] 2 a7
n |, 8r’ Bde|,0n

The action ¢ of the S-matrix is independent of the coordinates. Hence, equation (11a)
agrees with (12) under the normalization

R(e',E) =2np (2¢' —2EY 32, (18)

In terms of the classical trajectories for the electrons the normalization (18) has a direct
physical interpretation which will be discussed in the next section.

3.3. The choice of initial conditions

Although unfamiliar it is completely equivalent to the conventional procedure to take the
radial distance r’ of the projectile from the scattering centre as an ‘impact parameter’.
The usual initial conditions for the scattering may be formulated as follows. The bound
electron moves on a Kepler ellipse without eccentricity and with binding energy Eg = -% au
(we describe a 1s ground-state electron of hydrogen). The free electron has an energy
of ¢ = E 4+ Ep and its trajectory is started at some position ry sufficiently far away
from the scattering centre (the nucleus) to define an asymptotic state. The only free
parameter to vary is the phase ¢y of the electron on the bound orbit. Since only
positions and momenta of projectile and target electron relative to each other are relevant
to specify an asymptotic scattering state we can formulate an equivalent but numerically
more convenient set of initial conditions: the trajectory of the bound electron is always
started at the outer turning point of the ellipse so that the momentum of the target
electron is zero, The initial distance of the projectile from the nucleus is taken to be
ro + r’ where ry is fixed at some arbitrary distance large enough so that the result is
independent of r} (we have taken 1000 au). Instead of the phase ¢p we vary r' over
the length that the projectile travels during the time the target electron needs to complete
a full period of motion. Thus, r’ serves as a generalized ‘impact parameter’ in our
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approach. This choice of initial conditions is numericaily more convenient because the
Coulomb singularity, i.e. the initial condition where the trajectory of the target electron is
at its inner turning point (with infinite momentum at the position of the nucleus), can be
avoided.

3.4. Relation to previous classical work

The approach described here utilizes only information from classical orbits which are
also the basis of classical trajectory work on electron-hydrogen, electron-Het and
positron-hydrogen scattering (Abrines and Percival 1966, Boesten L G T er al 1976,
Dimitrijevic and Gruji¢ 1983, Read 1984, Gailitis 1986, Wetmore and Olson 1986, Gu
and Yuan 1993, for reviews see Rau 1984, Read 1984a and Grujié 1986). There
are some minor differences concerning technical details like the regularization of the
Coulomb singularities which is described well by Gaspard and Rice (1993) for the
electron-hydrogen system. We use essentially the same procedure, the difference is
that instead of the new time differential dr = d¢/(rir2) we take dt = dt/(r; + r2)
which is more appropriate for the scattering application. The regularization has the
pleasant side effect that integration of the trajectories to extremely large distances r
is possible with a moderate number of time steps Ar. The feature is not only
pleasant but crucial for a converged ionization probability calculation for £ — 0. In
this limit only at very large distances can it be determined whether slow electrons
belong ultimately to a highly excited Rydberg orbit or if they are really continuum
electrons.

The major difference to previous classical work, however, lies in the theoretical
formulation of the scattering problem. Within the framework of a semiclassical S-
matrix it is possible to provide a complex scattering amplitude. With equation (1la)
we can formulate a differential cross section from a specified initial state including all
sorts of interference effects from different classical paths. Of course, the scattering
amplitude is an approximation. However, it has invaluable conceptual advantages, in
particular, for ionization under long-range (Coulomb) potentials, The difficult question
of a final state for three or more charged particles in the continuum does not arise
since the boundary conditions appear naturally for the semiclassical S-matrix through the
properties of the classical trajectories. From each trajectory only the final momentum of
the projectile must be exiracted to determine if the trajectory contributes to fragmentation,
excitation or (classical) exchange. This will become much clearer through the following
example.

Moreover, specialized to the three-body Coulomb fragmentation, the reduction to the
‘collinear problem’ of two degrees of freedom, often thought of as a model assumption,
can be justified as a reasonable approximation for energies close to threshold within the S-
matrix approach as formulated above. However, what ‘close’ means quantitatively cannot
be determined within the approximation. As we will see in section 5 the comparison with
the experiment suggests a range of validity of the collinear semiclassical S-matrix up to
8-10 eV above threshold for ionization of hydrogen by electron impact. With the scaling
law to be described in section 6 the corresponding range of validity for other targets is
easily deduced and in agreement with the experimental cross sections. Since the collinear
S-matrix remains valid well above the threshold E = 0 it is possible to determine threshold
properties and even the range of excess energies for typical threshold behaviour within the
present approach (Rost 1994),
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4. Positron-hydrogen scattering close to the fragmentation threshold

4.1. The classical deflection function

As can be seen from (115) the crucial quantity for the S-matrix is the classical defiection
function, €(r"). A more familiar example for a deflection function (which is introduced,
for example, in Brink (1985) or Jung (1986)) is ©(J) in Rutherford scattering where © is
the scattering angle and b is the impact parameter. As already mentioned above, ' plays
the role of the impact parameter and the final energy ¢ of the projectile is the final state
observable which corresponds in Rutherford scattering to the scattering angle ©.

The present deflection function €(r'), shown in figure 1, reveals three intervals (i)
of initial conditions leading to physically distinct final states. For r' € (1} positronium
is formed in a classical exchange reaction indicated by the negative energy ¢ < 0. The
positronium energy ¢ is defined relative to the energy of the centre of mass between the
proton and the positronium. Fragementation into three free particles for r' € 7(2) and
excitation with »' € I(3) both create a free positron whose kinetic energy defines € relative
to the proton which is at rest. The necessary frame transformation leads to a piecewise
continous deflection function. ¥t has a ‘gap’ at the border between 7(1) and 7(2) where the
coordinaies are changed. The reason is that in the rest frame of the proton positronium is
formed at a positron kinetic energy of € = E/2. Hence, fragmentation only occurs with
final positron energies £/2 < ¢ < E. Finally, with ' € I(3) and ¢ > E, excitation occurs
with the electron remaining bound after the collision.

Remarkably, the deflection function e€{(r') is monotonic: it has only one intersection
with a horizontal line at ¢ indicating the correct initial condition r’. In other words to each
differential cross section with a final projectile energy € only a single trajectory contributes,
This property can be onderstood from (i) in section 3.2 where it was shown that each
trajectory is uniguely described by the value for its minimum hyperradius R. It is a
general property of the classical dynamics for particles interacting through Coulomb forces
irrespective of the individual charges.
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Figore 1. The final energy € > 0 of the positron as  Figure 2. The initial values r’ leading to different
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4.2. Energy dependence of the total cross section

With only one term remaining in the sum of (11a) the semiclassical result collapses to the
classical cross section (Rost and Heller 1994) without any effects from the phase factor of
(11a) to give

ar

Ps.e’(E) =p(€,E)E ~I—e —a—e-

The total cross section is then simply proportional to the intervals of »* for which a certain
process, for instance fragmentation, happens:

1 E
meg(E) = E£

The normalization is given by the sum of all processes that can happcn,

1 (19)

E"

de=={ a'= A"(?‘) (200)

54 ref(2)

3
R="Ar@). (208)
i=1

The intervals Ar'(i) can be read off directly from figure 2. The relative probabilities
P;(E) = Ar'(i)/R are shown in figure 3. Excitation and positroninm formation are the
dominant processes close to threshold while the cross section for fragmentation is very small,
The fragmentation cross section initially follows the power law o (E) o« E2% derived by
Klar (1981b) from the Wannier threshold theory in the limit £ —> 0 (see figure 4). For higher
excess energy the calculated cross section is flatter than the Wannier threshold prediction.
The same tendency is found in electron-hydrogen scattering to be discussed in section 3.
The easiest way to obtain the fragmentation cross section experimentally in electron—
atom scattering is to count the ions in the exit channel. The fragmentation of the positron—
hydrogen or, in general, a positron—atom system near threshold is more complicated to
observe, since in the ion signal fragmentation must be discriminated against positronium
formation which also produces ions. Furthermore, due to the large exponent ¢ = 2.65 the
fragmentation cross section is much smaller for positron impact than it is for electron impact
(o = 1.127) resulting in poor statistics in the experiment. However, our results contain one
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Figure 3. Relative probabilities for fragmentation Figure 4. The fragmentation probability as a function
(full curve), excitation (dotted curve) and positronium  of excess energy. The broken curve represents a fit with
formation (broken curve). the function §E2%5,
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positive aspect of threshold fragmentation by positron impact: the threshold regime extends
to higher excess energies than in electron impact ionization. Hence, it is possible to probe
the threshold properties experimentally at higher energies where the yield is already better.
Hopefully experiments will be performed in the near future (Weber and Raith 1994).

Our analysis has revealed that the fragmentation of hydrogen by positron impact close
to threshold is essentially a classical process since no interferences from different classical
paths occur. Hence, the classical calculation should give the same result. Surprisingly,
Wetmore and Olson (1986) extract from their classical-trajectory Monte Carlo (CTMC) data
a threshold exponent of & = 3. However, only data higher than 5 eV excess energy were
used for the determination of the exponent due to very poor statistics for the cross section
closer to threshoid. (In this sense the CTMC calculation must fight the same difficulties as
the experiment.) Wetmore and Olson conclude for these reasons that the CTMC exponent
might not be reliable.

4.3. A simple derivation of the semiclassical S-matrix

Before we continue with electron impact scattering we will demonstrate briefly how the
scattering amplitude (11a) can be derived in a very simple manner with the insight we have
gained in the present section. From the initial conditions as described at the end of the last
section we know that the length R representing the normalization is the distance that the
{asymptotically free) projectile travels during a complete cycle T on the Kepler ellipse of
the bound electron, R = Tp'. This is also the direct outcome of (2056) since the deflection
function €(r’) is periodic in r” with the period R triggered by the period of the bound motion
according to R = Tp'. The classical period T for a bound electron is given (in atomic
units) by 7 = 2w (2¢' — 2E)~*2 (Goldstein 1980, p 100) which leads with the momentum
p’ of the projectile to (18). The normalization guarantees that the classical probability to
find the projectile after the collision is (still) unity. (Semiclassically, the S-matrix preserves
unitarity only to the order of #).

Now we have derived the functional dependence of the normalization R(E,¢") in a
very simple way without referring to Miller's S-matrixj. 'We can complete this shortcut
for the derivation of the semiclassical S-matrix with the following argument. It is clear
from energy conservation and the total dimensionality of the problem (four phase space
variables) that the classical probability 7 is a simple derivative of an appropriate one-
dimensional deflection function. Any final and initial parameter suitable to characterize the
dynamics can be chosen and their mutual dependence creates a deflection function. The
normalization will be different for each choice of variables but the scattering amplitude will
always be the same. Thus, the only non-trivial quantity is the normalization which we have
just determined.

5. Electron impact fonization of hydrogen close to the threshold

5.1. The classical cross section

Compared to positron-impact scattering we have to deal with one more complication, the
symmetrization of the indistinguishable electrons. However, in a first step we may ignore
the Pauli principle and calculate the classical scattering probability. The deflection function
&(r’) in figure 5 has exactly the same structure as in positron-hydrogen scattering, in

1 The derivation of the normalization does not hinge upon the monotony of the deflection function, see for instance
Rost {1994c).
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particular it is monotonic so that to there is again only the contribution of one trajectory to
the unsynunetrized S-matrix. The intervals of initial conditions describe the same physical
processes as in figure 1, namely r’ € (1) represent classical exchange trajectories, 7’ € I(2)
stands for ionization (fragmentation) and r* € 7(3) leads to excitation. Since the energy
of the bound electron in 7(1) as well as the kinetic energy of the free electron in I(3) are
defined relative to the same centre of mass, the proton which is at rest, there is no frame
transformation necessary. Hence, unlike in the postitron-hydrogen case, there is no ‘gap’
in the deflection function. In analogy to (20a) we can define the classical cross section for
ionization in electron-hydrogen scattering by
Ar'(2)

E , 1 E
Pca(E)=_[D P(G,E)de='ﬁfo %

which behaves for E — 0 like Py ox E'? (see figure 6) as predicted analytically by
Wannier (1953). How does the result change if the Pauli principle is employed?

de = (21)

ar'
de

5.2. The differential cross section

The scattering amplitude must now be symmetrized with respect to the identical electrons
leading to a singlet (+) and a triplet (—) partial cross section

1ge. do* = p+ 2
§°: 2= = PLAE) = [Sce(B) + Spce (B)]

22
re o _ , (22)
8¢ P = g‘er{E) = ISE.E’(E) - SE—e,e'(E)I

with the S-matrix element S, (E) as in (114). Since quantum mechanics is linear in the
amplitude (the wavefunction} it is legitimate to take a symmetry into account a posteriori
as in (22). In fact this is the standard quantum mechanical procedure in scattering theory
(compare e.g. Taylor 1972, chapter 22).

In the present context special circumstances help to simplify (22). It is convenient to
introduce a scaled energy variable x = ¢/E — 1/2 so that the electron exchange is given by
inversion, x — —x. Keeping in mind that only one trajectory coniributes to S; ,(E) the

20.0 T 1 1 1 I ]

15.0 '—l\ ] —
1N, 3/ 2
10.0 | et g |
5.0 | mmmnmamame e - =
w e a
il X 4 . &
I
50 1 1 g}
-10.0 |} - b
. o
-15.0 { | 2
-20.0 ! 1 L ) 1 ) 1 I
0 1 2 3 4 5 & 7 -
r (au) log E  (arbtr. units)

Figure 5. Classical deflection function for the final  Figure 6. The total cross section according to Wannier
energy € of the projectile electron as a function of  (broken curve} and from (21).

its initial position 1000 au+r’ at a total energy of

E = 0.lau. The intervals F(i),i = 1,2,3 mark

different physical processes, see the text.
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symmetrized probabilities (22) are now constructed from the coherent sum of two classical
paths which could show an interference pattern. However, the action is exactly symmetric
under electron exchange ®(x,x’) = ®(~x, x’). This property originates in the Coulomb
interaction only in so far as it has been possible to reduce the relevant phase space to four
dimensions which is the true reason for the symmetric action (see the proof in appendix B).
‘We now have the simple differential probabilities

PEAE) = (VPG ) & /P, D)) )

Normalized to Py, they are shown in figure 7 for emergies spanning three orders of
magnitude from E = 1073 10 1 au. In the singlet configuration at threshold there is a
preference of about 5% for equal energy sharing. This threshold energy sharing was also
obtained by Read (1984) and Gailitis (1986) in classical trajectory calculations without a
physical initial state. Our present findings, with a well defined initial state, together with
these previous results confirm that certain properties of threshold ionization are independent
of the initial state as already predicted by Wannier (1953). For more details see Rost
(1994c). However, only in the limit E — 0 is the energy distribution universal with a 5%
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Figure 8. Same as figure 7, but for the P~ (x) probability, normalized to P*(0).

preference for equal energy sharing. As described in Rost (1994) this preference decreases
towards a ‘transition region’ around 3 eV excess energy where the energy distnbution is
flat within 1%. For higher energies a preferred unequal energy sharing is approached (with
a fast projectile electron and a slow target electron). In the 3S° symmetry there is no
transition since equal energy sharing is not allowed. Hence, the shape of the cross section
changes only slightly for different excess energies (figure 8), The ratio of triplet to singlet
probability is reflected by P,/ P which demonstrates that the triplet probability is orders
of magnitudes smaller relative to the singlet probability for small excess energies. At E =1
an both probabilities have the same order of magpitude (compare figure 7(d) with 8(d)).
The behaviour can be understood analytically from a perturbation expansion of the triple
collision manifold, a task which is beyond the scope of the present paper. However, we
use a resuit from this analysis to interpret figures 7 and 8.

5.3. Analytical interpretation of the differential scattering cross section

The unsymmetrized scattering amplitude P(x} can be represented as a sum of two functions
Py(x) and P,(x) which are symmetric and antisymmetric under electron exchange. These
two functions scale differently with the total energy, namely (Rost 1994d)

Py(x,x', E) x E* P,(x,x',E) x E® 24)



3018 J-M Rost

5.0 [} 1] 1] 10 + 1} ]

7 @ (&)

[ T S Ll | A0 ! ; 1

-0.5 -0.25 0 0.26 0.5 0.5 -0.25 g 0.25 0.5
X

Figure 9. The classical probabilities, (¢} Py (x), and (b} P, (x) as defined in the text and scaled
according to their behaviour with the total energy for E = 1072 au (full curve), E = 102 au
(broken curve), £ = 10~} au (dotted curve) and £ = 1 au (chain curve).

where o = 1.127 is the Wanpier exponent (Wannier 1953), The reason for the scaling can
be found from an analysis of the triple collision manifold (TCM) which is responsibie for
the ionization dynamics in the limit £ — 0O (Eckhardt 1991). Essentially, each contact
of a trajectory with the TCM leads to a factor E% in the probability for this frajectory.
For trajectories contributing to P, one contact is sufficient while for the antisymmetric
probabilities two contacts with the TCM are necessary. This explains the scaling (24) which
is demonstrated in figure 9 for an epergy range spanning the same three orders of magnitude,
1072 < E < lau as in the previous figures. While the total energy dependence follows (24)
very well, the dependence of P,(x) and P,(x) on x changes appreciably from 10~ au to
1 au excess energy.

As an immediate consequence of (24) we can expand the mixed term in the singlet and
triplet probabilities P% from (23) according to

2
P*(x, +, E) % 2Py (x) — 12OV g
2P, (x)
(25)
- ’ Pu(x)z 3
P (x,x', E) 8 ——=— o E®

2P,(x)

The approximation (253), shown in figures 7 and 8 with open circles, is excelient for small
excess energies and even for £ = 1 au is still reasonable. From equation (25) it follows
that P*/P~ = E~* which for E = -11‘—3 au is still a factor of 100.

With regard to the question of semiclassical corrections to the classical result close to
threshold our analysis shows that even the triplet cross section is classical in the sense that
no i dependence occurs. Due to the symmetry of the action ¢ (x} under electron exchange,
classical probabilities in the form of (23} are sufficient to describe the symmetrized cross
sections, The result might prove interesting for the justification of purely classical ajectory
methods such as the CTMC. With the classical probabilities obtained by these methods
symmetrized cross sections could be constructed according to (23).

Most Wannier-like threshold approaches use a quadratic approximation about the
Wannier saddle (x = 0,6, = 180°). In this context it is interesting to note that the
energy sharing distribution P%(x) can only be represented by a function quadratic in x
in a very limited region around x = O (see the broken curves in figures 7(a} and (c)).



Threshold ionizaton of atoms by electron and positron impact 3019

The necessity to go beyond the quadratic approximation has also been emphasized recently
by Kazansky and Ostrovsky (1994). Another necessary extension of the Wannier theory
towards reliable differential observables like the energy sharing probability is a realistic
description of the initial state. Without invoking the Wannier picture the present approach
satisifies both criteria. Hence, the transition from the threshold behaviour manifested in
preferred equal energy sharing to the preference for unequal energy sharing characteristic
for higher excess energies could be demonstrated here and awaits experimental confirmation.

5.4, The total cross section

Formally the total cross section for a given symimnetry is obtained by integration of (23)

PE(E) = f " PE(E)dx. (26)
0

As expected from the energy scaling (24) the singlet cross section for £ — 0 follows the
Wannier power law PT(E) o¢ EV*¥ (broken curve in figure 6) and the triplet cross section
behaves as P~ (E) o E*3¥!. More interestingly, the symmetrized cross section P*(E) lies
very close to the purely classical total cross section (21). This follows from (25) since

PYHE)~ fi 2P (x)dx = fﬁ (P(x)+ P(—x))dx = 2P4(E). 27)
0 0

Thus, the Pauli principle mainly has the effect of doubling the ¢lassical cross section for 'S
symmetry as can be expected for perfect constructive interference. Based on the underlying
classical trajectories we can interpret the 3S cross section with the semiclassical S-matrix
as a destructive interference effect between the two classical paths whose contribution to
the scattering amplitude must be summed coherently.

In the ‘classical’ electron impact ionization experiment of McGowan and Clarke (1968)
the total cross section has been measured from @ to 8 eV excess energy. It is shown
together with the present result of semiclassical S-matrix theory in figure 10. Only the
overall normalization was matched at some arbitrary energy (5.82 eV).

The good agreement of the theoretical curve with the experimental data justifies a
posteriori our approximations, first of all the semiclassical approach, and within this
approach the restriction to the L = O coniribution and to the classical fixed point at
&1 = 180°. Sill, the theoretical curve must be normalized to the data at one point since

0.40 T T7 T T
/
'
7
0.30 | / .
!
— /
o~ o I
(] ¢
B 0.20 | ’J -
[} /
/
0.10 L 7 " Figure 18. The total ionization cross section for
- electron impact on H(Is). The experimental data
points are taken from McGowan and Clarke (1968).
| \ . . The calculated cross section {full curve) has been
0.00 normalized to the experimental data at 584 eV, The
0 2 8 10 broken curve is the Wannier cross section o(E) =

4 6
E (eV) BEM1Z7,



3020 J-M Rost

under the present approximations it is not possible to predict an absolute cross section.
However, our inclusion of the initial state determines the energy scale which is in most
threshold theories another fit parameter. Furthermore, there is no principal obstacle to
calculating an absolute cross section with the semiclassical S-matrix in the future. For
the time being it seems to be more interesting to see how far the simplified picture, as
presented here, can describe reality. Of course, most of the experiments have been performed
with targets different from atomic hydrogen. Hence, in the next section we will derive a
semiempirical extension of the hydrogen theory to describe general electron—-atom threshold
ionization.

6. Electron impact ionization of atoms close to threshold

The considerable experimental material that has been accumulated over the years involves
valence-shell as well as inner-shell ionization near threshold. We will show that both
processes, as far as they are not influenced by core excitations, can be described like the
hydrogen ionization. Similar arguments apply to positron—atom scatiering. However, here
the experimental material is scarce and, moreover, it is difficult to separate (experimentally)
fragmentation from positronium formation. Hence, we will only discuss electron—atom
scattering in the following.

6.1, The influence of the initial state on threshold ionization

From the Wannier theory one can deduce that the dynamical aspects of ionization near
threshold are a final state property. This statement refers to cbservables whose properties
are induced by the triple collision manifold (Eckhardt 1991, Rost 1994d), for instance the
energy dependence of the total cross section, the energy sharing between the continuum
electrons and the distribution in the interlectronic angle &7, As far as the present §-matrix
approach covers these observables, cur results confirm the statement (s¢e sections 5.2 and
54).

For our present purpose we need to ask how does the initial state influence the ionization
yield for finite excess energies? We expect the universality of the threshold phenomena to
persist to some extent also for finite excess energies and assume in the following empirical
ansatz that the initial state determines only the energy scale ps of the ionization cross
section. Together with the scaling B4 of the absolute cross section we now have two
parameters to adapt the otherwise universal threshold ionization yield to the specific targets.
The cross section for threshold ionization of atom A in its specified initial state (this includes
inner-shell ionization) reads then in terms of the hydrogen cross section oy

OA(E) = Paou(paE) . (28)

Figure 11 shows ionization cross sections of valence shell electrons for He(ls), Na(3s)
and, as already discussed, H(1s). In addition, three inner-shell ionization cross sections are
shown, namely Ne(1s), Ar(1s) and Xe(2p). The full curves correspond to (28) with suitable
scaling parameters 8, and ps. As can be seen the agreement is generally good despite the
great variation of the ionization potential from around 5 ¢V for Na to pearly 5 keV for Xe.

6.2, The energy scaling as a function of the ionization potential

We may go one step further and parametrize the energy scaling factor with the respective
ionization potentials 74 of the target electrons. On a logarithmic scale the function
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Figure 11. Total ionization cross sections in arbitrary units. The full curve is the hydrogen
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is shown for {4) Ne(ls) (Kamm er al 1994), (¢} Ar(1s) and {f) Xe(2p) (both Hippler et af 1983),
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24 = p{fa) is linear with a slope of of —i— {(figure 12) so that we may approximate

13.6eV\ ¥/
p(1)=( I"’ ) . (29)

Together with (28) only the absolute scale of the individual cross sections o, remains
undetermined. However, as already mentioned above, the absolute cross section is not
measured in most threshold experiments. To demonstrate the validity of (29) we show in
figure 13 all experimental cross sections from figure 11, scaled to the hydrogenic cross
section according to (29).

6.3. Comment on the threshold behaviour of inner-shell ionization

The present results indicate that the cross section for any threshold ionization behaves like
the hydrogenic cross section characterized with the Wannier exponent «. Particularly for
inner-shell ionization this deserves some explanation. The electron pair leaving the atom
from an inner-shell region must penetrate the entire atomic electron cloud (Klar 1981). Slow
electrons might be passed by the Auger electron following the decay of the inner-sheil hole.
Subsequently, the slow ionized electron will see a core whose charge has increased by one
and it is conceivable that a significant fraction of the slow electrons will not escape but
fall back into the nucleus. These hindered ionization events should change the ionization
characteristics compared to a structureless target. Why do such processes not alter the energy
dependence of the cross section? The energy sharing function (7) provides an explanation.
This function is relatively smooth (from threshold to 8 eV excess energy in hydrogen the
maximum difference between the probability for an electron with energy € &~ 0and ¢ ~ E/2
is not more than 8% (compare with figure 5(c) of Rost (1994)}. In a crude approximation
we could assume that the energy sharing is constant. In this case, the eventually missing
tail of slow electrons in the energy sharing distribution of the ionization yield of inner-shell
electrons will mainly affect the absolute value of the signal (which is represented by B4 in
(28)) but not the functional energy dependence of the total ionization cross section.
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6.4. The determination of the power law in experimental cross sections

One goal in the analysis of experimental threshold cross sections has always been to confirm
or contradict the Wannier law E'¥ of the total cross section. In many experimental
situations the threshold itself is a problematic region due to finite energy resolution and
do to the uncertainty in the position of the threshold. In this situation the power law has
been applied to some finite energy region above threshold. This is the main reason for
the discrepancies which have been reported for the threshold exponent o from different
experiments. To determine the threshold exponent correctly it is crucial (i} to have reliable
data very close to E = 0 and this implies, in turn, that (if) it is necessary to know precisely
where E = 0 is in the experiment and (iii) that the theoretical curve must be convoluted
with the experimental energy resolution. In practice, this is impossible and the dilemma
can only be avoided if the shape of the cross section is known for a wider energy range
than just at threshold. A magnification of figure 10 for the threshold region in figure 14
highlights, in particular, point (iii). The discrepancy between theory and experiment can
be attributed to the energy resolution of 0.1eV in the experiment by McGowan and Clarke
(1968).

Here we have assumed that we know the (universal) shape of the ionization cross section
from the calculation for hydrogen. With this ansatz we could indirectly show that, in fact,
all types of threshold cross sections are consistent with the Wannier power law o oc E'"1%7,

7. Summary and outlook

This paper documents the first attempts to formulate and apply semiclassical $-matrix theory
to fragmentation under long-range (Coulomb) potentials. We find the results encouraging
and hope that they will provide motivation for further studies.

With only a single classical trajectory contributing to a differential cross section, it has
been possible to justify an extremely simple version of the semiclassical S-matrix approach
for scattering near the fragmentation threshold. Thereby, the semiclassical S-matrix has
provided a link between Wannier's and others’ classical phase space theories and standard
quantuin mechanical scattering theory.

Besides more applied work of calculating differential cross sections following electron,
ion or photon impact, future studies could elaborate on the fundamental question concerning
the relation between a quantum mechanical and a semiclassical description. For this
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issue scattering below threshold is of particular interest exhibiting such complex classical
phenomena as chaotic scattering with fractal structures (Rost and Wintgen 1994). Overall,
the results from this work provoke the question: to what extent is electron—atom scattering,
rot only close to threshold, a (semi)classical process?
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Appendix A. Proof of the classical properties of a Coulomb system from section 2.2

Here we briefly sketch the proof of the properties (i}~iii) which do not appear to be well
known. However, specialized to the two-electron atom they can be found explicitly (i) and
implicitly (ii,iii} in ‘Wannier’s paper from 1953.

(i) To prove that the hyperradius R(¢) has a single minimum as a function of time we
consider the classical Hamiltonian of 3N — 3 degrees of freedom (relative motion of ¥
particles) with 2 homogeneous potential of degree n in hyperspherical coordinates

P2 AN
H=E=2+ 7
where A? is the squared grand angular momentum operator that acts on the N — I hyperangles
£2. The angles may be defined in various ways, see for instance Louck (1960). With
Hamilton's equations we can write

EBE‘F_Rz_EMA_z(?_l_ C(Q)'R,""l (A?.)

+ C(2)R" (A1)

Using equation (A1) and the fact that P = dR/dr = 0 at an extremum we can reformulate
(AZ) as

- =(1+3) SIS (A3)

ds? |p_g R3 R

One sees from (A3) that for n = 0, —1, —2 the second derivative of R(z) at the extremum
(if it exists) is positive provided that E > Q. In these cases each trajectory has a single
minimum in the hyperradius (because all extrema would be minima according to {A3) and
R(t) is differentiable). The solution corresponds to the dipole potential (n = —2), the
Coulomb potential (n = —1) and the trivial case of free motion (n = ). Additional
solutions occur for E < (. Mathematically a single minimum in R(?} may exist if n > 0.
Physically it is simply the ‘centre’ of attraction of the multidimensional but attractive and
homogeneous potential. From the structure of the proof it is clear that the result holds for
arbitrary masses of the N particles. }

(i1) In the scaled Hamiltonian (4) the scaled grand angular momentum operator A has
an implicit dependence upon the total scaled angular momentum L but not on the energy E,
A = AL, L) From equation (3) we know that L = EM*L. Hence, for any finite L,
we have limz_o A(Q, L) = A(RQ, 0) which is independent of the total angular momentum
L and coincides with L = I == 0. Therefore all partial waves L in (Al) are described by
the L = 0 partial wave for £ — 0.




Threshold ionizaton of atoms by electron and pasitron impact 3025

(iii) This property follows from the equations of motion for ps with the appropriate
initial conditions 8(fo) = 180° and ps(fp) = 0. However, it holds only for three particles,
N =3

Appendix B. Proof of the identical action for a direct and an exchange orhit

We start from the initial state consisting of a bound (Kepler) orbit denoted by o' and a free
projectile with momentum p;. We want to prove that the action for an orbit that goes from
this initial state to a final continuum state with momenta p;, p» is the same as for an orbit
which starts with the same initial state but ends at a final state with exchanged electrons,
P2, pi. The action differential d® = ridp; + rzdp: itself is symmetric under electron
exchange., We have to prove that

P.p2 P P
f 4o = f o (B1)
P 204

where pl denotes the initial momentum on the Kepler ellipse. Interchanging the indices
1 +> 2 on the right-hand side of (B1) reveals that (B1) is valid if p) = p)}. Since p] is fixed
by the projectile energy we must be able to choose the initial momentum on the Kepler
ellipse p; = p|. This choice is indeed always possible for two reasons. Firstly, in principle
all momenta pj €] — 00, oof are available along a Kepler ellipse. Secordly, the discussion
of the initial conditions in section 3.3 has revealed that we are free to choose the starting
point on the Kepler eilipse. Hence, the condition p| = pj can always be fulfilled and the
action of the direct and the exchanged path are indeed identical.
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