DÉPARTEMENT DE PHYSIQUE DE L'ÉCOLE NORMALE SUPÉRIEURE

LABORATOIRE KASTLER BROSSEL

Cavity Quantum Electrodynamics Lecture 1

Michel BRUNE

Quantum information and Cavity QED

• Principle of cavity QED experiments:

- •Two level atoms interacting with a single mode of a high Q cavity In practice:
- \checkmark Rydberg atoms
- ✓ superconducting microwave cavity

•The "strong coupling" regime: coupling >> dissipation

- Theoretical background: the Jaynes Cummings model
 Simple but contains already a lot of physics
- Fields of interest:
 - **-** Fundamental: better understanding of quantum theory.
 - Applications": using quantum physics to manipulate quantum information.
 - Central role of "entanglement"

Probing the EPR atom-field entanglement

Illustrating Bohr-Einstein dialog

central concept: complementarity

Massive slits: insensitive to collisions with single particles Interferences: mater behave as waves Experiment performed with photons, electrons, atoms, molecules. Light slits: recoil of the slit monitors which path information No interferences: mater behave as particles

The "Schrödinger cat"

• Elementary formulation of the problem:

Superposition principle in quantum mechanics:

- Any superposition state is a possible state
- Schrödinger: this is obviously absurd when applied to macroscopic objects such as a cat !!

Up to which scale does the superposition principle applies?

"Schrödinger cat" and quantum theory of measurement

 Hamiltonian evolution of a microscopic system coupled to a measurement apparatus:

 \rightarrow Entangled atom-meter state

Problem: real meters provide one of the possible results not a superposition of the two → too much entanglement in QM? Need to add something? NO! "decoherence" does the work

Entanglement and quantum information

Can one do something "useful" from the strangeness of quantum logic?

- <u>Yes</u>:
 - Quantum cryptography: does work
 - Quantum communication: teleportation
 - Quantum algorithms:
 - ▲ Search problems (Grover)
 - ▲ Factorization (Shor)
 - How?

by manipulating qubits with a quantum computer

 Practically: extreeeeemely difficult to realize: a quantum computer manipulates huge Schrödinger cat states.

Anyway interesting for understanding

the essence and the limits of quantum logic

- 1870-1920: Effect of boundary conditions on dipole radiation (Maxwell, Hertz, Sommerfeld).
- 1930: atom-metal surface interaction (London, Lennard Jones).
- 1946: Spins coupled with a tuned resonator (Purcel).
- Boundary effects on Synchrotron radiation (Schwinger).
- 1947: Vacuum fluctuations between two mirors, Casimir effect.
- 1954-60: Masers and Lasers: collective radiation of atoms in a cavity (Townes, Schalow...)
- 1974: Modification of molecular fluorescence near surfaces (Drexhage).
- 1979 A.. : Rydberg atoms in microwave cavities, Masers (ENS, Munich).
- 1983-87: Modification of spontaneous emission, experiments: ENS, MIT, Seattle, Yale, Rome...

CQED in the PERTUBATIVE regime: Low Q cavity or effect of a single mirror: coupling strength << dissipation rates</p>

Perturbation of atomic radiative properties which remains qualitatively the same as in free space.

Cavity Quantum electrodynamics: strong coupling

The strong coupling:	$\Gamma_{\rm at}, \Gamma_{\rm cav} << \Omega_0$	Ω_0 "vacuum Rabi frequency"
 CQED in optics: direct detection of the field Calte J. Kim Muni G. Rei Cold atom trapped" k vacuum fo -single pho difficulties: control of atomic motion 	ech: ble ch: mpe ns by rces pton gun - ci	Microwave: detection of atoms unich: H.Walther osed cavities ow I Rydberg atoms romaser, trapping es, number states
- control of atomic motion within λ_{opt} - atomic lifetime: 10 <i>ns</i>		Main topic of this course
Le Houralso: Excitons and microcavities		

Aim of this course: CQED with Rydberg atoms in the strong coupling regime.

- Lecture 1: the strong coupling regime
- Lecture 2: quantum gates and quantum logic
- Lecture 3: Quantum measurement and decoherence
- Lecture 4: perspectives

1. One atom, one mode, the Jaynes-Cummings model

- 2. Rydberg atoms in a cavity:
- the tools achieving the strong coupling regime
 - □ The experimental setup
 - Vacuum Rabi oscillations
- 3. Rabi oscillation in a small coherent field
 - Direct observation of field graininess

4. Rabi oscillation Ramsey interferometry and complementarity

1. One atom, one mode, the Jaynes-Cummings model

• Same procedure as in free space:

1- Find the classical eigenmodes of the resonator satisfying the boundary conditions.

Classical electric field:

$$\overrightarrow{E_{\alpha}}(\overrightarrow{r},t) = E_{\omega}.\overrightarrow{f}_{\alpha}(\overrightarrow{r}).e^{i\omega t} + cc$$

2- Each mode is quantized as an harmonic oscillator. Electric field operator: $\vec{E}_{\alpha}(\vec{r},t) = E_{\omega} \cdot \left(\vec{f}_{\alpha}(\vec{r}) \cdot \hat{a}_{\alpha} + \vec{f}_{\alpha}^{*}(\vec{r}) \cdot \hat{a}_{\alpha}^{+}\right) \quad \left[a,a^{+}\right] = 1$

Where:

•
$$E_{\omega} = \sqrt{\frac{\hbar\omega}{2\varepsilon_0 V_{cav}}}$$

"vacuum electric field".

• $V_{cav} = \int_{Cavin} \left| \vec{f}_{\alpha}(\vec{r}) \right|^2 d^3 \vec{r}$ volume of the mode. V_{cav} is really a physical volume.

- $Max \left| \vec{f}_{\alpha}(\vec{r}) \right| = 1$ • $\overline{f}_{\alpha}(\vec{r})$ complex function of Normalization: (real functions will be enough for us)
- Here the quantized object is a collective excitation of the field and all the electric charges at the surface of the mirror.
- We now consider a single mode and drop the index α .

The Jaynes Cummings model:

+ a single two level atom, frequency w_{at}
+ a single field mode, frequency w_c
+ dipole coupling
+ negligible damping

 $|\delta| = |\omega_c - \omega_{at}| << \omega_c, \omega_{at}$

• Atom-field Hamiltonian:

$$H_{at} = \frac{\hbar \omega_{at}}{2} \left[\left| e \right\rangle \left\langle e \right| - \left| g \right\rangle \left\langle g \right| \right] \right]$$
$$H_{cav} = \hbar \omega_c \left[a^+ a + 1/2 \right]$$
$$V_{at-cav} = -\vec{d} \cdot \hat{\vec{E}}(\vec{r})$$
$$\vec{d} = d_{eg} \left[\left| e \right\rangle \left\langle g \right| + \left| g \right\rangle \left\langle e \right| \right]$$

$$H = H_{at} + H_{cav} + V_{at-cav}$$

- Condition of validity:
- ω_c close to a single atomic transition:
- small cavity: $FSR >> \delta$

The Jaynes Cummings hamiltonian

• Rotating wave approximation (RWA):

$$V_{at-cav} = \hbar \Omega(\vec{r})/2 \left[\frac{a|e}{\langle g| + a|g} \langle e| + a^+|g\rangle \langle e| + a^+|e\rangle \langle g| \right]$$

Non-resonant terms are neglected

$$V_{at-cav} \approx \hbar \Omega(\vec{r})/2 \left[a | e \rangle \langle g | + a^+ | g \rangle \langle e | \right]$$

Vacuum Rabi frequency:

$$\Omega(\vec{r}) = -2d_{eg}.\vec{f}(\vec{r}).E_{\omega} = \Omega_0.\left|\vec{f}(\vec{r})\right|$$

$$\Omega_0 = 2d_{eg} \cdot \sqrt{\frac{\hbar\omega}{2\varepsilon_0 V_{cav}}}$$

Validity of RWA:

$$\Omega << \omega_{at}, \omega_{c}$$

Dressed energy levels at resonance ($\omega_{at} = \omega_c$)

- Eigenvalues:
- Eigenstates:

$$E_{\pm n} = \hbar \omega_c (n + 1/2) + \hbar \omega_{at} \pm \hbar \Omega_0 / 2 \sqrt{n+1}$$
$$\left| \pm n \right\rangle = 1 / \sqrt{2} \left[\left| e, n \right\rangle \pm \left| g, n+1 \right\rangle \right]$$

 Levels just couple by pairs (except the ground state)

 level splitting scales as the Field amplitude

Resonant atom-field coupling: dynamic point of view

Coherent Rabi oscillation

Condition of observation of vacuum Rabi splitting

- Cavity damping rate:
- Atomic lifetime:

$$\begin{array}{ccc} \Gamma_{cav} & , & T_{cav} = {\Gamma_{cav}}^{-1} \\ \hline \Gamma_{at} & , & T_{at} = {\Gamma_{at}}^{-1} \end{array} \end{array}$$

 The width of dressed levels must be smaller than the vacuum Rabi frequency:

$$\left| \begin{array}{c} \Omega_{0} \gg \Gamma_{cav}, \Gamma_{at} \\ (\Gamma_{at} + \Gamma_{cav})/2 \\ \uparrow \\ \Omega_{0} \\ \neg, n > \end{array} \right|$$

2. Rydberg atoms in a cavity: achieving the strong coupling regime

One photon and one atom in a box:

 Photon box: superconducting microwave cavity
 "circular" Rydberg atoms

The cavity

The "circular" Rydberg atoms

"Circular" atoms as two level atoms

• Stark diagram of Rydberg levels:

Good quantum number: m

• Linear Stark effect: $\omega_{\text{Stark}}/2\pi = 100 \text{ MHz}/(V/cm)$

• Quadratic Stark shift of the 51c-50c transition: $255 \ kHz/(V/cm)^2$ used for fast tuning of the atom in or out of resonance

Preparation of circular atoms

Detection of Rydberg atoms (1)

- atoms detected one by one by selective ionization in an electric field
- ▲ measurement of internal energy state of the atom after interaction with C

CW detection in a field gradient: efficiency 40%

Detection of Rydberg atoms (2)

 New detector: atoms are ionized in a pulsed homogeneous electric field:

Improved detection efficiency: 70% +/- 10%

Velocity selection by optical pumping:

Velocity "superselection"

Experimental set-up

Laser velocity selection

Circular atom preparation: - 53 photons process - pulsed preparation 0.1 to 10 atoms/pulse

⁸⁵Rb

Cryogenic environment T=0.6 to 1.3 K A weak blackbody radiation State selective detector One atom = one click

e

Experimental setup

Single photon induced Rabi oscillation

Coherent Rabi oscillation replaces irreversible damping by spontaneous emission

3. Rabi oscillation in a small coherent field

Direct observation of discrete Rabi frequencies

Coherent field states

- Number state: $|N\rangle$
- Quasi-classical state: $|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{N} \frac{\alpha^N}{\sqrt{N!}} |N\rangle$; $\alpha = |\alpha| e^{i\Phi}$

Rabi oscillation in a small coherent field

Rabi oscillation in a small coherent field: observing discrete Rabi frequencies

Fourier transform of the Rabi oscillation signal

Discrete peaks corresponding to discrete photon numbers

Direct observation of field quantization in a "box" Rabi oscillation in a small coherent field: Measuring the photon number distribution

$$P_{g}(t) = \sum_{N} P(N) \frac{1}{2} \left(1 - \cos\left(\Omega_{0} t \sqrt{N+1}\right) e^{-t/\tau} \right)$$

▲ Fit of P(n) on the Rabi oscillation signal:

▲ accurate field statistics measurement

Rabi oscillation in small coherent fields

Phys. Rev. Lett. 76, 1800 (1996)

4. Rabi oscillation Ramsey interferometry and complementarity

- Entanglement and complementarity
- quantum eraser
Probing the EPR atom-field entanglement

Illustrating Bohr-Einstein dialog

central concept: complementarity

Massive slits: insensitive to collisions with single particles Interferences: mater behave as waves Experiment performed with photons, electrons, atoms, molecules. Light slits: recoil of the slit monitors which path information No interferences: mater behave as particles

More practical interferometers

- R1 and R2: resonant $\pi/2$ pulses induced by CLASSICAL microwave fields.

acts as "beam splitter" for the internal atomic state

- The phase ϕ of the interferometer is scanned using a Stark pulse

Mach Zender Interferometer

More practical interferometers

- R1 and R2: resonant $\pi/2$ pulses induced by CLASSICAL microwave fields.

acts as "beam splitter" for the internal atomic state

- The phase ϕ of the interferometer is scanned using a Stark pulse

Mach Zender Interferometer

Small mass beam splitter: the recoil momentum P at reflexion of the particle on B1 keeps track of which path information No fringes for a microscopic beam splitter

Ramsey interferometry with a "quantum beam splitter"

• $\pi/2$ pulse R₁: Rabi oscillation in a small coherent field injected in C. S injects in C a small coherent field $|\alpha\rangle$.

- $|lpha_{_{e}}
 angle$ and $|lpha_{_{g}}
 angle$ are not coherent states
- Generaly: $|\langle \alpha_e | \alpha_g \rangle| < 1$
 - partial atom-field entanglement
 - partial which path information is stored in the final field state

From classical to quantum beam splitters:

 $\pi/2$ pulse in a large coherent state: $\overline{n} \gg \sqrt{\overline{n}}$

$$|\alpha_{e}\rangle \approx |\alpha_{g}\rangle \approx |lpha\rangle$$

$$|e\rangle \otimes |\alpha\rangle \rightarrow \frac{1}{\sqrt{2}} (|e\rangle + |g\rangle) \otimes |\alpha\rangle$$

When α is large enough, one more photon in the field does not make any difference on the field state

 \rightarrow NO which path information stored in the field: "classical beam splitter"

• $\pi/2$ pulse in vacuum: $\alpha=0$

$$|e\rangle \otimes |0\rangle \rightarrow \frac{1}{\sqrt{2}} (|e,0\rangle + |g,1\rangle)$$

Atom-field EPR pair: Hagley et al. PRL **79**,1 (1997)

The photon number is a perfect label of the atomic state

→ FULL which path information stored in the field: "quantum beam splitter"

Practical realization

- Timing:
 - □ Inject a controlled coherent field. (average photon number <n>measured by measuring light shifts in an auxiliary experiment)
 - \Box Put atom on resonance at time t_{int} . For each value of <n>, t_{int} is adjusted for performing a $\pi/2$ Rabi oscillation pulse
 - \Box Vary ϕ by varying V_{cav} at time t_{ϕ} .

Fringes signal for various values of n:

Perfect distingishability: No fringes

Saturated contrast: η =0.73

Bertet et al. Nature **411**, 166 (2001)

Quantitative interpretation in term of atom-cavity entanglement

 Variation of fringe Visibility V:

Reduced atom density matrix:

$$\rho_{at} = \frac{1}{2} \begin{pmatrix} 1 & \left\langle \alpha_{e} \middle| \alpha_{g} \right\rangle^{*} \\ \left\langle \alpha_{e} \middle| \alpha_{g} \right\rangle & 1 \end{pmatrix}$$

 $V = \left| \left\langle \alpha_e \left| \alpha_g \right\rangle \right| . \eta$

 η : saturated contrast at large n

Checking the atom-"beam splitter"entanglement: a quantum eraser

• C is initially empty:

• The which path information is erased by the second interaction with C

variations of fringe contrast can not be interpreted as simply resulting from noise added by the interaction with the beam-splitter

A genuine quantum eraser:

 Which path information is erased by appropriate measurement of the "which path meter":

 R_1 is then equivalent to a classical $\pi/2$ pulse whose phase depends on the result of the measurement of the field. When R_2 is activated, one expects conditional Ramsey fringes.

Quantum eraser: <u>measuring the cavity field with a second atom</u>

1. π pulse in C: swaps a O or 1 photon state into an atomic state: Maître et al. PRL **79**,769 (1997)

$$|g,0\rangle \Rightarrow |g,0\rangle \\ |g,1\rangle \Rightarrow |e,0\rangle$$

2. Detection of the atom after a classical $\pi/2$ pulse: equivalent to the measurement of the phase of the atomic dipole equivalent to the measurement of the phase on the initial field state.

This performs the appropriate measurement of the cavity field state in $\ensuremath{\mathcal{C}}$

High visibility is restored

Conclusion of lecture 1:

- Cavity QED with microwave photons and circular Rydberg atoms:
- a powerfull tool for:
- Achieving strong coupling between single atoms and single photons
- manipulating entanglement and complementarity

.... next lecture:

Rabi oscillation in vacuum and quantum gates

- Strong coupling regime in CQED experiments:
 - F. Bernardot, P. Nussenzveig, M. Brune, J.M. Raimond and S. Haroche. "Vacuum Rabi Splitting Observed on a Microscopic atomic sample in a Microwave cavity". Europhys. lett. 17, 33-38 (1992).
 - P. Nussenzveig, F. Bernardot, M. Brune, J. Hare, J.M. Raimond, S. Haroche and W. Gawlik. "Preparation of high principal quantum number "circular" states of rubidium". Phys. Rev. A48, 3991 (1993).
 - M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond and S. Haroche: "Quantum Rabi oscillation: a direct test of field quantization in a cavity". Phys. Rev. Lett. 76, 1800 (1996).
 - □ J.M. Raimond, M. Brune and S. Haroche : "Manipulating quantum entanglement with atoms and photons in a cavity", Rev. Mod. Phys. vol.73, p.565-82 (2001).
 - P. Bertet, S. Osnaghi, A. Rauschenbeutel, G. Nogues, A. Auffeves, M. Brune, J.M. Raimond and S. Haroche : "Interference with beam splitters evolving from quantum to classical : a complementarity experiment". Nature 411, 166 (2001).
 - □ E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J.M. Raimond and S. Haroche: "Generation of Einstein-Podolsky-Rosen pairs of atoms", PRL 79,1 (1997).