The generation of an isolated attosecond pulse using multi-cycle two-color laser fields

Dong Eon Kim

Laser Science Laboratory, POSTECH, Pohang, South Korea

The effect of the mixing of pulsed two color fields on the generation of an isolated attosecond pulse has been systematically investigated. One main color is 800 nm and the other color (or secondary color) is varied from 1.2 to 2.4 . This work shows that the continuum length behaves in a similar way to the behavior of the difference in the square of the amplitude of the strongest and next strongest cycle. As the mixing ratio is increased, the optimal wavelength for the extended continuum shifts toward shorter wavelength side. There is a certain mixing ratio of intensities at which the continuum length bifurcates, i.e., the existence of two optimal wavelengths. As the mixing ratio is further increased, each branch bifurcates again into two sub-branches. This 2D map analysis of the mixing ratio and the wavelength of the secondary field easily allows one to select a proper wavelength and the mixing ratio for a given pulse duration of the primary field. The study shows that an isolated sub-100 attosecond pulse can be generated mixing an 11 fs full-width-half-maximum (FWHM), 800 laser pulse with an 1840 nm FWHM pulse. Furthermore the result reveals that a 33 fs FWHM, 800 nm pulse can produce an isolated pulse below 200 as, when properly mixed

Back