A review is given on the microwave studies performed in the Marburg quantum chaos group starting from the very beginning about 1990 up to the shut-down two years ago. This includes test of random matrix theory and periodic orbit theory in chaotic microwave resonators, the emission patterns of distorted dielectric resonators, studies of microwave equivalents of graphene-like structures, or the generation of freak waves in a lab size version of the ocean.
In 1972 Phil Andersen articulated the motto of condensed matter physics as “More is different.” However, for most many-body systems the behavior of a trillion bodies is nearly the same as that of a thousand. Here I argue for a class of condensed matter, “tunable matter," in which many more is different. The ultimate example of tunable matter is the brain, whose cognitive capabilities increase as size increases from 302 neurons (C. Elegans) to a million neurons (honeybees) to 100 billion neurons (humans). I propose that tunable matter provides a unifying conceptual framework for understanding not only a wide range of systems that perform biological functions, but also physical systems capable of being trained to develop special collective behaviors without using a processor.