A list of preprints can be found on
    This is what google figured out about our publications.


    1. “Entanglement scaling and spatial correlations of the transverse field Ising model with perturbations”,
      Richard Cole, Frank Pollmann, Joseph J. Betouras,
      Phys. Rev. B 95, 214410 (2017) [Preprint].

    2. “Characterizing time-irreversibility in disordered fermionic systems by the effect of local perturbations”,
      Shreya Vardhan, Giuseppe De Tomasi, Markus Heyl, Eric J. Heller, Frank Pollmann,
      Phys. Rev. Lett. 119, 016802 (2017) [Preprint].

    3. “Signatures of Dirac cones in a DMRG study of the Kagome Heisenberg model”,
      Yin-Chen He, Michael P. Zaletel, Masaki Oshikawa, Frank Pollmann,
      Phys. Rev. X 7, 031020 (2017) [Preprint].

    4. “Distilling momentum-space entanglement in Luttinger liquids at finite temperature”,
      Balázs Dóra, Izabella Lovas, Frank Pollmann,
      Phys. Rev. B 96, 085109 (2017) [Preprint].

    5. “Quantum Mutual Information as a Probe for Many-Body Localization”,
      Giuseppe De Tomasi, Soumya Bera, Jens H. Bardarson, Frank Pollmann,
      Phys. Rev. Lett. 118, 016804 (2017) [Preprint].

    6. “Full counting statistics in the Haldane-Shastry chain”,
      Jean-Marie Stéphan, Frank Pollmann,
      Phys. Rev. B 95, 035119 (2017) [Preprint].

    7. “Fibonacci anyons and charge density order in the 12/5 and 13/5 plateaus”,
      Roger S. K. Mong, Michael P. Zaletel, Frank Pollmann, Zlatko Papi?,
      Phys. Rev. B 95, 115136 (2017) [Preprint].

    8. “Statistics of fractionalized excitations through threshold spectroscopy”,
      Siddhardh C. Morampudi, Ari M. Turner, Frank Pollmann, Frank Wilczek,
      Phys. Rev. Lett. 118, 227201 (2017) [Preprint].


    1. “Efficient variational diagonalization of fully many-body localized Hamiltonians”,
      F. Pollmann, V. Khemani, J. Ignacio Cirac, and S. L. Sondhi,
      Phys. Rev. B 94, 041116(R).
    2. “Domain-wall melting as a probe of many-body localization”,
      J. Hauschild, F. Heidrich-Meisner, and F. Pollmann,
      Phys. Rev. B 94, 161109(R) .
    3. “Typicality approach to the optical conductivity in thermal and many-body localized phases”,
      R. Steinigeweg, J. Herbrych, F. Pollmann, and W. Brenig,
      Phys. Rev. B 94, 180401(R).
    4. “How periodic driving heats a disordered quantum spin chain”,
      J. Rehn, A. Lazarides, F. Pollmann, and R. Moessner, Phys. Rev. B 94, 020201(R).
    5. “Momentum-Space Entanglement and Loschmidt Echo in Luttinger Liquids after a Quantum Quench”,
      B. Dóra, R. Lundgren, M. Selover, and F. Pollmann, Phys. Rev. Lett. 117, 010603.
    6. “Obtaining Highly Excited Eigenstates of Many-Body Localized Hamiltonians by the Density Matrix Renormalization Group Approach”,
      V. Khemani, F. Pollmann, and S.?L. Sondhi, Phys. Rev. Lett. 116, 247204.
    7. “Bridging coupled wires and lattice Hamiltonian for two-component bosonic quantum Hall states”,
      Y. Fuji, Y.-C. He, S. Bhattacharjee, and F. Pollmann, Phys. Rev. B 93, 195143.
    8. “Density matrix renormalization group on a cylinder in mixed real and momentum space”,
      J. Motruk, M. P. Zaletel, R. S. K. Mong, and F. Pollmann, Phys. Rev. B 93, 155139.
    9. “Quantum quench in two dimensions using the variational Baeriswyl wave function”,
      B. Dóra, M. Haque, F. Pollmann, and B. Hetényi, Phys. Rev. B 93, 115124.
    10. “Signatures of the many-body localization transition in the dynamics of entanglement and bipartite fluctuations”,
      R. Singh, J. H. Bardarson and F. Pollmann, New Journal of Physics, 18, 023046.


    1. “Variational Monte Carlo simulations using tensor-product projected states”,
      O. Sikora, H.-W. Chang, C.-P. Chou, F. Pollmann, and Y.-J. Kao, Phys. Rev. B 91, 165113.
    2. “Time-evolving a matrix product state with long-ranged interactions”,
      M. P. Zaletel, R. S. K. Mong, C. Karrasch, J. E. Moore, and F. Pollmann, Phys. Rev. B 91, 165112.
    3. “Characterization and stability of a fermionic fractional Chern insulator”,
      A. G. Grushin, J. Motruk, M. P. Zaletel, and F. Pollmann, Phys. Rev. B 91, 035136.
    4. “Infinite density matrix renormalization group for multicomponent quantum Hall systems”,
      M. P. Zaletel, R. S. K. Mong, F. Pollmann, and E. H. Rezayi, Phys. Rev. B 91, 045115.
    5. “Distinct Trivial Phases Protected by a Point-Group Symmetry in Quantum Spin Chains”,
      Y. Fuji, F. Pollmann, and M. Oshikawa, Phys. Rev. Lett. 114, 177204.
    6. “Fragility of Symmetry Protected Topological Order on a Hubbard Ladder”,
      S. Moudgalya and F. Pollmann, 
      Phys. Rev. B 91, 155128.
    7. “?2 topological liquid of hard-core bosons on a kagome lattice at 1/3 filling”, 
      K. Roychowdhury, S. Bhattacharjee, and F. Pollmann, Phys. Rev. B 92, 075141.
    8. “Interaction-driven phases in the half-filled honeycomb lattice: An infinite density matrix renormalization group study”, 
      J. Motruk,  A. G. Grushin,  F. de Juan, and F. Pollmann, Phys. Rev. B 92, 085147.
    9. “Chain-based order and quantum spin liquids in dipolar spin ice”,
      P. A. McClarty, O. Sikora, R. Moessner, K. Penc, F. Pollmann, and N. Shannon, Phys. Rev. B 92, 094418.
    10. “Bosonic Integer Quantum Hall Effect in an Interacting Lattice Model”, Y.-C. He, S. Bhattacharjee, R. Moessner, and F. Pollmann, Phys. Rev. Lett. 115, 116803.
    11. “Absence of Orthogonality Catastrophe after a Spatially Inhomogeneous Interaction Quench in Luttinger Liquids”, Balázs Dóra and Frank Pollmann, Phys. Rev. Lett. 115, 096403.
    12. “Sudden expansion and domain-wall melting of strongly interacting bosons in two-dimensional optical lattices and on multileg ladders”,
      J. Hauschild, F. Pollmann, and F. Heidrich-Meisner,
      Phys. Rev. A 92, 053629.
    13. “Kagome Chiral Spin Liquid as a Gauged U(1) Symmetry Protected Topological Phase”,
      Y.-C. He, S. Bhattacharjee, F. Pollmann, and R. Moessner,
      Phys. Rev. Lett. 115, 267209.


    1. “Detection of symmetry-enriched topological phases”,
      C.-Y. Huang, X. Chen, and F. Pollmann, Phys. Rev. B 90, 045142.
    2. “Berry-Phase-Induced Dimerization in One-Dimensional Quadrupolar Systems”,
      S. Hu, A. M. Turner, K. Penc, and F. Pollmann, Phys. Rev. Lett. 113, 027202.
    3. “Numerical study of a transition between Z2 topologically ordered phases”,
      S. C. Morampudi, C. v. Keyserlingk, and F. Pollmann, Phys. Rev. B 90, 035117.
    4. “Interplay of charge and spin fluctuations of strongly interacting
      electrons on the kagome lattice”,
      F. Pollmann, K. Roychowdhury, C. Hotta, and K. Penc, Phys. Rev. B 90, 035118.
    5. “Coulombic charge ice”,
      P. A. McClarty, A. O’Brien, and F. Pollmann, Phys. Rev. B 89, 195123.
    6. “Distinct Magnetic Phase Transition at the Surface of an Antiferromagnet”,
      S. Langridge, G. M. Watson, D. Gibbs, J. J. Betouras, N. I. Gidopoulos, F. Pollmann, M. W. Long, C. Vettier, and G. H. Lander, Phys. Rev. Lett. 112, 167201.
    7.  “From fractionally charged solitons to Majorana bound states in a 1D interacting model”,
      D. Sticlet, L. Seabra, F. Pollmann, and J. Cayssol,  Phys. Rev. B 89, 115430
    8. “Many-Body Localization in a Disordered Quantum Ising Chain”,
      J. A. Kjäll, J. H. Bardarson, and F. Pollmann, Phys. Rev. Lett. 113, 107204.
    9. “Flux insertion, entanglement, and quantized responses”,
      M. P. Zaletel, R. S. K. Mong and F. Pollmann, J. Stat. Mech.  P10007.
    10. “Double semion phase in an exactly solvable quantum dimer model on the kagome lattice”,
      O. Buerschaper, S. C. Morampudi, and F. Pollmann, Phys. Rev. B 90, 195148.
    11. “Real-time dynamics in the one-dimensional Hubbard model”,
      L. Seabra, F. H. L. Essler, F. Pollmann, I. Schneider, and T. Veness, Phys. Rev. B 90, 245127.


    1. “Linear quantum quench in the Heisenberg XXZ chain: Time-dependent Luttinger-model description of a lattice system”,
      F. Pollmann, M. Haque, B. Dóra, Phys. Rev. B 87, 041109(R).
    2. “Topological Characterization of Fractional Quantum Hall Ground States from
      Microscopic Hamiltonians”
      M. P. Zaletel, R. S. K. Mong, F. Pollmann,  Phys. Rev. Lett. 110, 236801.
    3. “Phase diagram of the anisotropic spin-2 XXZ model: Infinite-system density matrix renormalization group study” ,
      J. A. Kjäll, M. P. Zaletel, R. S. K. Mong, J. H. Bardarson, and F. Pollmann, Phys. Rev. B 87, 23510.
    4. “Loschmidt Echo and the Many-Body Orthogonality Catastrophe in a Qubit-Coupled
      Luttinger Liquid”
      B. Dóra, F. Pollmann, J. Fortágh, and G. Zaránd, Phys. Rev. Lett. 111, 046402.
    5. “Phase diagram of the isotropic spin-3/2 model on the z=3 Bethe lattice”,
      S. Depenbrock and F. Pollmann, Phys. Rev. B 88, 035138.
    6. “Topological phases in gapped edges of fractionalized systems”,
      J. Motruk, E. Berg, A. M. Turner, F. Pollmann, Phys. Rev. B 88, 085115.
    7. “Exotic Ising dynamics in a Bose-Hubbard model”,
      L. Seabra and F. Pollmann, Phys. Rev. B 88, 125103.
    8. “Ground-state fidelity of the spin-1 Heisenberg chain with single ion anisotropy: quantum renormalization group and exact diagonalization approaches”,
      A Langari, F Pollmann, M Siahatgar, J. Phys.: Condens. Matter 25 406002.


    1. Detection of symmetry-protected topological phases in one dimension ”,
      F. Pollmann and A.M. Turner, Phys. Rev. B 86, 125441.
    2. Symmetry protection of topological order in one-dimensional quantum spin systems”,
      F. Pollmann, E. Berg, A.M. Turner, and M. Oshikawa, Phys. Rev. B 85, 075125.
    3. Unbounded Growth of Entanglement in Models of Many-Body Localization”,
      J. H. Bardarson, F. Pollmann, J. M. Moore, Phys. Rev. Lett.  109, 017202.
    4. “Matrix-product-based projected wave functions ansatz for quantum many-body ground states”,
      Chung-Pin Chou, Frank Pollmann, and Ting-Kuo Lee, Phys. Rev. B 86, 041105(R) .
    5. Quantum Ice: A Quantum Monte Carlo Study”, O. Sikora, N. Shannon, F. Pollmann, K. Penc, and P. Fulde, Phys. Rev. Lett. 108, 067204.


    1. “Fermionic quantum dimer and fully-packed loop models on the square lattice”,
      F. Pollmann, J. J. Betouras, K. Shtengel, P. Fulde, Phys. Rev. B 83, 155117.
    2. “Bound states and E8 symmetry effects in perturbed quantum Ising chains”, J.A. Kjäll, F. Pollmann, J.E. Moore, Phys. Rev. B 83, 020407(R).
    3. “Extended quantum U(1)-liquid phase in a three-dimensional quantum dimer model”, O. Sikora, N. Shannon, F. Pollmann, K. Penc, and P. Fulde, Phys. Rev. B 84, 115129.
    4. Topological Phases of One-Dimensional Fermions: An Entanglement Point of View”, A.M. Turner, F. Pollmann, E. Berg, Phys. Rev. B 83, 075102.
    5. “Supersolid phase and magnetization plateaus observed in the anisotropic spin-3/2 Heisenberg model on bipartite lattices”,  J. Romhanyi, F. Pollmann and K. Penc, Phys. Rev. B 84, 184427.


    1. “Entanglement spectrum of a topological phase in one dimension”,
      F. Pollmann, A.M. Turner, E. Berg, and M. Oshikawa, Phys. Rev. B 81, 064439.
    2. “Dynamics after a sweep through a quantum critical point”,
      F. Pollmann, S. Mukerjee, A. Green, J.E. Moore, Phys. Rev. E 81, 020101.
    3. “Entanglement spectra of critical and near-critical systems in one dimension”,
      F. Pollmann and J.E. Moore, New J. Phys. 12, 025006.
    4. “Strongly correlated fermions on a kagome lattice”,
      A. O’Brien, F. Pollmann, P. Fulde,  Phys. Rev. B 81, 235115.


    1. Quantum liquid with deconfined fractional excitations in three dimensions”,
      O. Sikora, F. Pollmann, N. Shannon, K. Penc, and P. Fulde, Phys. Rev. Lett. 103, 247001 .
    2. “Theory of ?nite-entanglement scaling at one-dimensional quantum critical points”,
      F. Pollmann, S. Mukerjee, A. Turner, and J. E. Moore, Phys. Rev. Lett. 102, 255701.


    1. “Inflationary dynamics for matrix eigenvalue problems”,
      E. J. Heller, L. Kaplan, and F. Pollmann, Proc. Natl. Acad. Sci. 105, 7631.
    2. “Extended supersolid phase of frustrated hard-core bosons on a triangular lattice”,
      F. Wang, ?F. Pollmann, and A. Vishwanath, Phys. Rev. Lett. 102, 017203.
    3. “Dimensional tuning of electronic states under strong and frustrated interactions”,
      C. Hotta and F. Pollmann, Phys. Rev. Lett. 100, 186404.
    4. “Kinetic ferromagnetism on a kagome lattice”,
      F. Pollmann, P. Fulde, and K. Shtengel, ?Phys. Rev. Lett. 100, 136404.
    5. “Strings in strongly correlated electron systems”,
      P. Fulde and F. Pollmann, ?Ann. Phys. (Leipzig) 17, 441.
    6. “Strongly correlated electrons on frustrated lattices”,
      P. Fulde, F. Pollmann, E. Runge, I. J. of Phys. Res. 8, 13.


    1. “Charge degrees of freedom on the quarter–filled checkerboard lattice”,
      F. Pollmann, ?J. J. Betouras, E. Runge, and P. Fulde, J. Magn. Magn. Mater. 310, 966.
    2. “Fractionally charged excitations on frustrated lattices”,
      E. Runge, F. Pollmann, and P. Fulde, Int. J. Mod. Phys. B  21, 2215.


    1. “Spectral functions and optical conductivity of spinless fermions on a checkerboard lattice”,
      F. Pollmann, E. Runge, and P. Fulde, Phys. Rev. B 73, 125121.
    2. “Classical corr. of defects in lattices with geometrical frustration in the motion of a particle”,
      F. Pollmann, J. J. Betouras, and E. Runge, Phys. Rev. B 73, 174417.
    3. “On confined fractional charges: a simple model”,
      F. Pollmann and P. Fulde, Europhys. Lett. 75, 133.
    4. Correlated fermions on a checkerboard lattice”,
      F. Pollmann, J. J. Betouras, K. Shtengel, and ?P. Fulde, Phys. Rev. Lett. 97, 170407.
    5. “Charge degrees of freedom on frustrated lattices”,
      F. Pollmann, Doktorarbeit, Technische?Universität Ilmenau, PhD Thesis.
    6. “Spectral functions for strongly correlated 5f electrons”,
      F. Pollmann and G. Zwicknagl, Phys. Rev. B 73, 035121.